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The energy transition regarding the replacement of  ICE (internal 
combustion engines) to electric powered vehicles requires a 
fundamental shift on both the generation and use of energy. 
Whilst the transition to electric vehicles directly reduces carbon 
emissions, how the supply chain is structured can create 
significant differences on a range of impacts. Increasingly this 
means that the supply of critical minerals is under the spotlight.

The terrestrial mining industry is increasingly being asked to 
demonstrate how it is managing wider impacts around its 
operation.  One critical issue is gaining a clearer view of the wider 
carbon impacts of mining, and an understanding of how different 
means of extraction and processing will result in different levels of 
carbon emissions associated with operation and ultimately critical 
mineral supply. 

A particular issue under the spotlight is how the sector measures 
and understands how land-use changes as a result of mining 
operations impact change carbon sinks. Effective action to 
mitigate against climate change depends not only on low carbon 
energy sources but also the protection and restoration of carbon 
sinks.

The just energy transition Forests are vital carbon sink ecosystems, with international 
attention focused on protection of these critical ecosystems. Forests 
are seen as the most critical of these terrestrial ecosystems in terms 
of their ability to capture and lock up carbon [1].

This dual role that forests play: sequestration of CO2 from 
atmosphere and carbon storage - is key to the carbon accumulation 
done by these forests.. Over time this sequestration builds up a store 
of carbon. Critical is the rate of carbon accumulation by these 
forests. The announcement at COP27 of a “rainforest OPEC” by 
Brazil, the DRC and Indonesia highlights the importance to such 
countries of protecting rainforests and gaining economic benefit 
from doing so. 

Forest ecosystems are removed or/and degraded as a result of 
number of land-use changes. However, the terrestrial mining 
activity necessitates significant land-use, which may or may not be 
remediated after extraction[2]. Peer-reviewed research also points to 
the fact that once a mine establishes access infrastructure, it 
facilitates access for further deforestation for other industries like 
agriculture, palm oil, etc. Degradation of these forests will mean a 
reduction in carbon accumulation. Removal means not just a net 
loss of sequestration, but the release of CO2 held in these carbon 
stocks [3].

https://phys.org/news/2022-11-rainforest-giants-brazil-indonesia-dr.html
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Terrestrial Carbon Sinks Project: Cobalt and Nickel

Cobalt is currently 
produced in the 
Democratic Republic of 
Congo (DRC) (75% of 
global production).  
Russia, Australia, 
Philippines Cuba, 
Madagascar Papua New 
Guinea, and Canada are 
also producers. 

Cobalt
Nickel

Nickel is currently 
produced in, Indonesia 
(50% of the global 
production). Philippines, 
Russia, New Caledonia, 
Australia, China, Brazil, US 
and Canada are also 
producers.Nickel

Quantification of carbon impact requires building up a clear
picture of rates of carbon loss and accumulation allowing an
understanding of how a carbon stock can change over time. This
requires data on two issues:

A. Estimation of carbon stocks (quantity of carbon stored in
the forest ecosystems) before terrestrial mining sites and
estimation of loss of carbon stock, and

B. Changes to carbon sequestration i.e., estimated changes to
carbon flow – the removal of CO2 from the atmosphere

This study is focused on the impact of land-use change on the
forest carbon sinks in key cobalt and nickel mining: DRC and
Indonesia for the Lithium-ion battery supply chain. To do this we
have focused in areas essential to the mining of these critical
minerals and sought to establish a clear picture of changes in
carbon as a result of local mining and processing.
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This study measured:

Above Ground Biomass
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Below Ground Biomass

Soil

Carbon sequestration 
= 

Soil respiration & decomposition (tonnes of carbon/per 
hectare/year)

Carbon emissions, due to land-use change
=

net photosynthesis to create biomass – i.e. the rate of 
biomass acquisition changes over time

Total ecosystem carbon stock (tonnes/hectare) 
= 

above ground biomass, below ground biomass, soil
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Carbon Sink Change – what to measure

CO2

CO2

CO2

CO2

CO2

Calculating carbon changes as a result of mining means
understanding changes in land use, and also the different ways
this impacts the carbon cycle as shown below.
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Overview of main results 

Cobalt

The carbon model is used to provide four main results relating to 
cobalt and nickel; 

• The production of theses materials negatively 
changes forest/woodland carbon sinks negatively 

• The increase in mine growth decreases  carbon 
stock capacity overtime. 

• Carbon flow capacity decreases and emissions 
increase overtime as mines grow.

• Carbon emissions for 5 mine sites have been 
compared to country REDD+ emissions. On 
average, these are the equivalent of 0.02% of DRC 
emissions and 6.5% of Indonesian emissions. 
Therefore, the impact as a proportion of country 
emissions is significant for Indonesia compared to 
DRC.

CO2e stock reduction:

 ~39.5 kg per m2 of mine developed 

~3.6 kg per kg of cobalt produced

CO2e sequestration loss:  

~102 g/m2 

~9.4 g per kg of cobalt produced

Cobalt

CO2eq stock reduction:

~168.25 kg per m2 of mine developed

~6.96-9.39 kg per kg of nickel produced

CO2eq sequestration loss:

~117 g/m2  

~4.8 - 6.5 g per kg of nickel produced

Nickel

Differences between the two countries in terms of impact relate to 
relative carbon stocks due to different forest species mapped.
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Central Zambezian Miombo Woodlands 

08

Cobalt – Carbon model overview

This study focuses on the country and region with the most productive
cobalt industrial mines. This is a desk-based study, utilizing Geographical
Information System (GIS) analysis to measure the land-use change within
contracted mining. The study was iterative in approach, however there
were five main stages to the process;

1. Used Benchmark Intelligence data, to identify the Katanga region in 
the Democratic Republic Congo (DRC) as the biggest producer of 
cobalt. Selected five of the largest mines in this region as case study 
mines (csm) all within the Central Zambezian Miombo Woodland 
region.

2. Mapped the csm using a combination of Landsat & Sentinel 2 [4], the 
size & extent of each csm was determined by mining licensing maps.  
Habitat types are defined by the Land Cover Classification (LCCS). To 
track land-use change over time, three time points are mapped;  
2008, 2014, 2022. The area (ha) of all the csm is the “pre-mine” time-
point.  It is assumed that this is undisturbed miombo woodland.

3. Sourced biomass data from peer reviewed literature for Miombo 
Woodland. 

4. Selected appropriate biomass equations for habitat type and data 
availability to create biomass estimates.

5. Modelled carbon stock and carbon flow in the Katanga region and 
carbon flows due to land-use change observed in the study area.

6. To  calculate the amount of carbon produced per unit of cobalt the 
ore grade and ore volume estimates for cobalt mines in the DRC 
were taken from the TMC Benchmark Life Cycle Assessment (LCA).

Image sourced D Johnson from  Hollingsworth, L.T., D. Johnson, G. Sikaundi, S. 
Siame. 2015. Fire management assessment of Eastern Province, Zambia. 
Washington, D.C.: USDA Forest Service, International Programs
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1. Cobalt – case study mine selection

The Democratic Republic of Congo 
(DRC) is the biggest producer of 
cobalt globally[5]. Located in central 
Africa with only 40km coastline on to 
the Atlantic Ocean  it is essentially 
landlocked as the largest sub-
Saharan African country it has a land 
area of ~2.345 km2[6]. Most cobalt 
reserves are in the south of the DRC 
in the Katanga region[7]. Industrial 
mines are interspersed with artisanal 
mines (see Figure 1). 

The five case study mines (csm)  are 
all within the Katanga region and are 
all within the Central Zambezian 
Miombo woodland ecoregion which 
is one or two major ecoregions in the 
DRC[8]. The Congo basin to the north 
consists of tropical forests[9] ,(see 
Figure 2).  

In the DRC, Miombo woodland covers 
an estimated 286,000 km2, more than 
70% of the Miombo woodland in the 
DRC are in Katanga region [10].

Figure 1 : map sourced from: Al Barazi et.al, 2017 [7] p.6 showing mines in Katanga region, DRC

Forest

Forest transitions & 
mosaics

Woodland

Woodland mosaics & 
transitions

UNESCO 
vegetation map DRC 

Figure 2: map sourced 
from Bouvet et al. 2018
[9], p 158 showing the 
main habitat types in 
the DRC – Woodland 
in this area is the 
Central Zambezian 
Miombo Woodland
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2. Cobalt – Habitat composition
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Miombo woodlands are defined both by their tree diversity and by their structure of a 
grassy herbaceous understorey with an often-sparse tree-canopy[11,12]. This ecosystem 
has been managed for ~55,000 years by frequent dry season fires, subsistence 
harvesting and cultivation[13]. Recently however, there has been increase in human 
activity including farming activity [14].

The Miombo Woodland, lends itself to a wide variation in natural cover[11] (see Figure 3). 
To understand the variation in habitat and the change over time, the Land Cover 
Classification system (LCC) [15] was used to map the different habitat types. In the case 
study mine (csm) areas it is assumed that the predominant habitat pre-mines is open 
broadleaved deciduous trees (LCC 2TOM28) and Woodland with sparse shrubs (LCC 
TVM28). Satellite imagery (see Figure 4) highlights the complexity of the study area[16].
Not all the habitats shown here are prevalent in the csm; however, the key components
(woodland, shrubland and grassland) are.

Figure 4: satellite image adapted from: Verhegghen et al 2012 [16], 
p.5068 shows the complex habitat coverage

Figure 3: Malaisse et al. 2016 [11] p.21 field drawing of structure of the Miombo woodland in the Katanga region 

Shrubland

Closed to open deciduous

Savanna woodland

Cobalt study area (approx.)

Mosaic cultivated areas

Grassland

Swamp grassland
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Figure 5: map adapted from: Maquia et. al.  2019 [17], p3 & Pelletier et. al. 2018 [13], p2 to 
show the different miombo ecosystem types

3. Cobalt – Habitat species data
There has been only limited research in to the Miombo Woodland 
and adjacent Mopane biome, the majority of this has been focused 
on southern Tanzania, Mozambique, Malawi, Zimbabwe and Zambia
[16-24].  In sub-Saharan Africa there are five different miombo 
ecoregions which extends over seven countries [17](see Figure 5). 
Broadly defined as dry or wet miombo [13] the case study mines area 
within the wet miombo (received >1000mm per annum). There is a
lot of variation throughout the region which is influenced by several
factors including differences in soil, climate and biogeography [16].

The miombo and adjacent mopane woodlands are dominated by 
Leguminosae  which includes over 19,500 species [17]. The key tree
species in the Miombo are from the Brachystegia, Julbernardia
and/or Isoberlinia genrera which are all within the Fabaceae family
and Detaroideae subfamily which generally hold the most biomass, 
forming a mostly open woodland canopy [24-26] Plant diversity in the 
Miombo is high with an estimated 8,500, tree, shrub, grass and herb 
species [12]. Miombo woodlands contain seven major soil groups [27], 
and most of the organic matter (SOM) is concentrated in the top 
30cm of soil [19], (see Appendix).

The main species  inventory used in this study is from the Mikembo 
Natural Reserve in the  Katanga region[28]. However, due to 
availability, biomass data is from a peer reviewed fieldwork research, 
from different countries outside of DRC (see Table 1). The biomass 
data for the herbaceous/grass understorey is taken from 
Mozambique [19].

Central Zambezian (wet)

Angolan (wet)

Eastern (predominately dry)

Southern (dry)

Zambezian Baklaea (dry)

Cobalt (approximate) study area

Miombo woodland types Mopane woodland types

Zambezian and Mopane

Angolan Mopane
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Miombo Woodland

Unit Source Location Data point

(ρ) Average bone dry 
-wood Density

Global Wood Density 
Database

Generic database 0.61715

(dbh) Average 
Diameter Breast 
Height (cm)

Kapinga et al. (2018)
Chiteculo, et al. 
(2018) 
Chamshama
Augustine et al. 
(2008)

Mwekera National 
Forest Reserve Zambia
Huambo Province, 
Angola.
Urumwa Forest Reserve, 
Tanzania

29.469 cm

Grassland/hebraous 
Biomass

Mercader et. al, 
(2009)

Niassa National Reserve 
(NNR) in northern 
Mozambique

4.5 mg(ha)

Average tC/ha in Soil Batjes, N. H. (2008) (SOTER) database for 
Central Africa

61.68 tC/ha

Relative density 
(average) (per key 
tree species)

Ilunga Muledi et. 
al.(2017)

Mikembo Forest 
Reserve, Upper Katanga 
DRC

See Appendix 2

Average (n) of trees 
(per ha

Ilunga Muledi et. al. 
(2017)

Mikembo Forest 
Reserve, Upper Katanga 
DRC

459.7

4. Cobalt - Biomass

Biomass has been calculated based on the   predominant 
miombo woodland, with herbaceous grassy understorey  
also accounted for. Table 1 details the key data points for 
biomass and their sources. 

To calculate carbon stock, it is necessary to use and 
develop equations to calculate the different components 
that make up Total Living Biomass (TLB) which include 
Above Ground Biomass (AGB) and Below Ground 
Biomass (BGB) and soil.  Allometric equations are 
commonly used to estimate aboveground biomass (AGB) 
in forests. Chave et al. (2015)[29] allometric equation for 
moist forest (at a 0.25 ha scale), achieves a 90% accuracy
[30,31]. 

AGB = 𝝆 𝒙 𝒆𝒔𝒑 {−𝟎. 𝟔𝟔𝟕 + 𝟏. 𝟕𝟖𝟒 𝒙 𝒍𝒏 𝒅𝒃𝒉 +
𝟎. 𝟐𝟎𝟕 𝒙 𝒍𝒏 𝒅𝒃𝒉 𝟐 − 𝟎. 𝟎𝟐𝟖𝟏 𝒙 𝒍𝒏 𝒅𝒃𝒉 𝟑}

The BGB is calculated from the equation from Cairns et al. 
(1997)[32] to estimate root biomass calculated from the 
AGB.  

BGB = 𝒆𝒙𝒑 {−𝟏. 𝟎𝟓𝟕 + 𝟎. 𝟖𝟖𝟑𝟔 𝒙 𝟏𝒏 𝑨𝑮𝑩 }

Soil was taken as ratio based on seven different soil types 
(see Appendix). 

Table 1: Key data points and sources for cobalt study area 
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𝐶arbon stock

𝑡𝐶
ℎ𝑎
𝑦𝑟

= 𝑇𝐿𝐵

𝑡
ℎ𝑎
𝑦𝑟

× 𝑐 + 𝑆𝐶𝑆

𝑡𝐶
ℎ𝑎
𝑦𝑟

tC/ha/yr = carbon stock tonnes per hectare (tC/ ha / yr)

TLB = total living biomass tonnes per hectare (t / ha / yr) 

c = proportion of carbon in bone-dry wood (unitless or kg / kg) x (i.e. IPPC data 0.5)

SCS = Soil carbon stock tonnes of carbon per hectare (tC / ha / yr) 

a = annual forest growth (m^3 / ha / yr) 

b = bone-dry wood density (kg / m^3) 

c = proportion of carbon in bone-dry wood (IPPC data: 0.57)

d = ratio of molecular mass of CO2 to C (44/12)

Carbon flow (per year)

𝐶𝑂2 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑟𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑎𝑛𝑛𝑢𝑚

𝑘𝑔𝐶𝑂2
ℎ𝑎
𝑦𝑟

 = 𝑎

𝑚3

ℎ𝑎
𝑦𝑟

× 𝑏
𝑘𝑔

𝑚3
× 𝑐

𝑘𝑔

𝑘𝑔
× 𝑑

Carbon stock 

5. Cobalt – Carbon Models

Carbon stock is the calculation of the Total Living Biomass 
per hectare of measured case study mine (csm) area. This is 
multiplied by the proportion of carbon in bone-dry wood 
density (per hectare per year).  Table 2 shows tree coverage 
ratio per miombo woodland. The average (n) of trees per 
hectare is variable dependent and there is a big variation per 
habitat type. Cropland is the csm traditionally include natural 
tree type and some understory.

Carbon flow is the estimation of  the intake of carbon 
through respiration annually, using the annual forest growth. 

Table 2:  Relevant Land Cover Classification (LCC) codes and observed prevalence

LCC CODE Description

Tree 
Coverage 
(Tc)

Number 
of Trees 
(Fct) Understorey

HR47 Rainfed Herbaceous crop, Small Fields 3% 16 30%

2SPJ67
Open General Shrubs With closed to open Herbaceous and 
sparse Trees 10% 53 60%

HR247 Rainfed Herbaceous crop, Isolated Small Fields 5% 27 30%

2TVM28 Woodland with sparse shrubs 100% 531 40%

4SPJF6
Open general medium to high shrubs with closed to open 
herbaceous on temporarily flooded land - fresh water 10% 53 100%

HR2Y Post Flooding Herbaceous Crop, Isolated Small Fields 5% 27 10%

2H(CP)8 Closed To Very Open Herbaceous with Sparse Shrubs 20% 106 70%

2TOM28 Open broadleaved deciduous trees with open shrubs 90% 478 90%

TL47PL Forest Plantation - Large Fields 5% 27 0%
Deforested 
area Deforested area 0% 0 0%

Herbaceous Herbaceous 1% 5 10%

2SJ67 Herbaceous with sparse trees 10% 53 40%
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Impact on carbon stock is a reduction of 3.61 kg CO2 eq/kg of cobalt

Impact on carbon sequestration is reduction of 9.32 g CO2 eq/kg of cobalt

This change to the carbon sink in the Katanga region due to cobalt mining at area (per 
square metre) is estimated by calculating the following four factors:

1. The estimated cobalt produced per annum per average mine – 15,750 tonnes (ore 
grade – 0.35% & 90% global recovery)

2. The average area of vegetation change per case study mine over 14 years assessed via 
GIS:

3. The land use intensity:

4. The carbon impact on land-use change (i.e. deforestation) – formulas on pages 12 & 13

1. The production of Cobalt in DRC changes the carbon sink 
negatively

1. LCA ore grades and 
Benchmark expert opinion 
on global recovery.

2. GIS data collection.
3. Calculated.
4. Calculated.

Total area change: 20,159,034 m2
Yearly: 1,439,931 m2

0.091 m2 / kg of Cobalt 

Carbon Stock – 39.5 kgCO2eq / m2
Carbon Flow  – 102 grams CO2eq / m2
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Mining impact on Carbon Stocks and Flows in Katanga, DRC

On average, 1,439,931 m2 of vegetation land is transformed in mining 
area per year (mine plus infrastructure). 

Based on estimated forest loss, an average cobalt from DRC mine 
causes the loss of 56,855 tonnes of CO2eq stock per year. 

Based on estimated forest loss, an average DRC cobalt mine causes 
the loss of  146.7 tonnes of CO2eq sequestration activity per year.

For every kilogram of cobalt produced, there is an average,
carbon stock loss of 39.5 CO2eq per m2 or 10.8 kgC/m2

For every kilogram of cobalt produced, there is an average, carbon 
sequestration loss of 102 gCO2 eq / m2 

56,855 carbon stock loss, average per 
mine (tCO2eq/pa)

146.7 Carbon sequestration 
loss per mine (tCO2eq/pa)

1,439,931 average annual land change 
per mine (m2)

39.5 loss of carbon stock of mine 
area developed 
(kgCO2eq/m2)

102 loss of carbon sequestration 
of mine area developed 
(gCO2eq/m2 )
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Cobalt impact on Carbon:  Katanga, DRC

On average, for every 317 tonnes of ore extracted, 1 tonne of cobalt is 
produced. *Excludes stripping ratio (overburden) Ore grade 0.35%

An average mine has a production yield of 15,750 tonnes of cobalt per 
year, assuming 90% global recovery rate.

For every square meter of mine area (i.e. mine plus infrastructure), on 
average an additional 11 kg of cobalt are produced (0.091 m2 / kg of 
cobalt).

For every kilogram of cobalt produced, there is an average carbon 
stock loss of 3.6 kgCO2eq/kgCo or 0.98 kgC/kgCo

For every kilogram of cobalt produced, there is an average carbon 
sequestration loss of 9.3 gramsCO2/kgCo

1:317           ratio of cobalt to ore 
 extracted*

15,750 average mine annual cobalt 
production (tonnes)

11 kg of cobalt per m2 per mine 
(land intensity)

1 : 3.6 Cobalt/ CO2eq Stock ratio

1 : 0.009 Cobalt/ CO2eq Sequestration 
ratio
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2. As cobalt mines increase in size, in the Katanga region, 
there is a reduction of carbon stock Cobalt mine growth in the Katanga 

region has led to a reduction of carbon 
stock (shown in mega tonnes carbon 
(MtC)) in the Central Zambezian Miombo 
Woodlands. The size of the mines and 
corresponding carbon stock changes are 
shown at three intervals over the 14 years 
assessed (2008-2022). 

Carbon stocks reduce from 6.5 MtC (24 
MtCO2eq) in 2008 to 5.4 MtC (20 MtCO2eq) 
by 2022.

Note, the methodology means that 
habitat and site changes across 2008-
2014 exclude changes that pre-date this 
study period. To account for this, an 
estimation of habitat “pre-mine” has been 
made, to allow for a comparator of 
change in carbon stock from this pre-
mine state to the years 2008, 2014 & 2022. 
A date allocation of this “pre-mine” state is 
not given and will in any case vary by 
mine site. 

Carbon stocks pre-mine in this study area 
are estimated at 10.3 MtC (37.8 MtCO2eq). 

-1.1 MtC (4 MtCO2eq)                       Carbon stocks reduces from 6.5 MtC in 2008 to 5.4 MtC 
 by 2022

-4.9 MtC (18 MtCO2 eq                    Carbon stocks reduces from 10.3 MtC pre-mine to 5.4 MtC 
 by 2022

Figure 6: Katanga region carbon emissions compared to carbon flow
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3. As cobalt mines increase in size, in the Katanga Region, 
carbon flow capacity decreases and emissions increase

As expected, as the cobalt mines in 
Katanga region grow and the forest is 
deforested and/or degraded the 
carbon flow (tC) decreases and the 
carbon emissions increase 
significantly.

It has been assumed that pre-mine 
the mapped areas were forest, 
allowing an estimation of pre-mine 
carbon stocks and carbon flow. Note 
pre-mine is not defined by time and in 
any case, this will vary by mine site. 

As carbon flow (i.e. capture of carbon) 
reduces over time, so carbon 
emissions from the mine sites increase 
from 0 to 4.9 MtC (18 MtCO2 eq).

Figure 7: Carbon emissions compared to carbon flow as nickel mines grow in the Katanga region, 
the DRC.
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4. Cobalt emissions - Comparison to 
REDD+ for the DRC

Figure 8 shows the carbon changes due to 
cobalt extraction in the case study areas 
(csm) compared to REDD+ result for the 
DRC. 

CO2eq Stock change/year (5-Mines)
the converted carbon stock loss result to 
show per year, compared to REDD+ 
figures in the DRC.

(%) of DRC emissions (Case Study mines)
Compares the carbon stock loss (%) per 
year to the REDD+ results [33].  Results are 
then converted into CO2eq.

tCO2eq/ha/yr/ x REDD+

(%) of DRC emission (Whole DRC)
This is multiplied by the difference in total 
area. This shows how much more intense 
emissions would be if the all the areas that 
REDD+ looked at are were also mined 
areas.

However, the study area is miombo forest 
and disturbed forests only.  So, if the same 
intensity of mines per land were 
developed for the forests that REDD+  
includes, then the emissions would be 
much greater.  This is because there would 
be a greater percentage of Total Living 
Biomass (TLB) per hectare.

CO2eq Emissions/year 
(REDD+, DRC

CO2eq stock change/ 
year (5-Mines)

(%) of DRC emissions 
(Case study mines)

(%) of DRC emissions 
(Whole of)

Year Mt/year Mt/year

2008 483.740 -0.184 0.038% 2691.0%

2009 483.740 -0.184 0.038% 2691.0%

2010 830.530 -0.184 0.022% 1567.3%

2011 830.530 -0.184 0.022% 1567.3%

2012 830.530 -0.184 0.022% 1567.3%

2013 830.530 -0.184 0.022% 1567.3%

2014 830.530 -0.199 0.024% 1697.6%

2015 979.151 -0.199 0.020% 1439.9%

2016 1028.693 -0.199 0.019% 1370.6%

2017 1078.235 -0.199 0.018% 1307.6%

2018 1127.777 -0.199 0.018% 1250.1%

2019 1177.318 -0.199 0.017% 1197.5%

2020 1232.838 -0.199 0.016% 1143.6%

2021 1290.976 -0.199 0.015% 1092.1%

2022 1351.856 -0.199 0.015% 1042.9%

Figure 8: Carbon changes in the case study areas (csm) compared to REDD+ result for the DRC
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Nickel – Carbon model overview
This study focuses on the country and region with the most productive
nickel industrial mines. This is a desk-based study, utilizing 
Geographical Information System (GIS) analysis to measure the land-
use change within contracted mining areas as specified by the mining
licences. The study was iterative in approach, however there were five
main stages to the process;

1. Used Benchmark Intelligence data, to identify Sulawesi in 
Indonesia as the biggest producer of nickel. Selected five of the 
largest mines in this region as case study mines (csm). 

2. Mapped the csm using a combination of Landsat & Sentinel 2 GIS
[341, the size & extent of each csm was determined by mining 
licensing maps where appropriate.  Habitat types are defined by 
two natural ecosystems; rainforest mangrove and by various 
agricultural practices. Three time points are estimated;  2008, 2014, 
2022 to track  land-use change over time. The area (ha) of all the 
csm is the “pre-mine” time-point.  It is assumed that this is 
undisturbed  natural habitats; rainforest and mangroves.

3. Sourced biomass data from peer reviewed literature for Sulawesi 
woodland.

4. Selected appropriate biomass equations for habitat type and data 
availability to create biomass estimates.

5. Modelled carbon stock and carbon flow in the Sulawesi region and 
carbon flows due to land-use change observed in the study area. 

6. To  calculate the amount of carbon produced per unit of nickel, 
ore grade and ore volume estimates for laterite nickel mines in 
Indonesia were taken from the TMC Benchmark Life Cycle 
Assessment (LCA).

Image sourced from: Makassar.Tribunnews.com 

Tropical Rainforest

Mangroves
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Indonesia  is one of the biggest producers of nickel globally[35]. 
Located between the Indian Ocean and Pacific Ocean in 
South-East  Asia, Indonesia is the largest archipelagic country 
in the world, with a land area of 1.91 million km2, spread across
17,504 islands[36]. The five main islands include Sulawesi, which 
is the largest island in the Wallacean island chain and is
~180,681 km2 [37,38] (see Figure 9). Sulawesi is the biggest region 
for laterite nickel mines as it includes some of the largest areas 
of ultramafic bedrock in the world[38]. These are mainly large 
industrial mines with concessions allocated adjacent to each 
other [39,40]. 

The five case study mines (csm) of nickel laterite ores are all 
within the Southeast arm of Sulawesi. This is where most of the 
nickel mining concessions  are allocated on the island (see 
Figure 10).

Sulawesi is mainly tropical moist lowland rainforest and is
considered a globally significant ecoregion. [41,It currently has 
approximately 95,000 km2 of forest area[42] and has fourteen 
different forest ecosystems. This  wide diversity of forests is part 
of the reason for the islands high rate of endemism and 
biodiversity [43]. 

Figure 9: Map; BP-REDD+, (2015) [38] p23 
Figure 10  Map of Nickel Contracts in Sulawesi highlighted in blue ArcGIS Pro (2022)

1. Nickel – case study mine selection

Nickel  study area 
(approx.)
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Across Indonesia the main forest types are Evergreen Needleleaf
Forest (ENF), Evergreen Broadleaved Forest (EBF) and Remnant
Forest (IFL), in the southeast arm of Sulawesi this is mainly EBF,
and IFL [44] (see Figure 11). Sulawesi forests are globally important 
with high degrees of biodiversity and endemism due to a 
complex geology[45]. However, Sulawesi like much of Indonesia 
has experienced high rates of deforestation and degradation due 
to several factors including mining operations and plantations
[43,46]. This has changed the forest composition and structure on 
the island. Pitopang (2012)[46] profile diagrams (Figure 12) show the 
structure of undisturbed and moderately disturbed rainforest in 
Lore Lindu National Park.  Undisturbed forests contain larger, 
taller trees with a dense understorey. However, as the forest is 
degraded the taller species are removed and the understorey 
becomes less dense and less uniform[46]. With case study mine 
area (csm), forest has been removed and replaced with 
plantations such as oil palm. 

Coastal mangrove forests were prominent around most  Sulawesi, 
but have been in decline because of mining, aquaculture and 
coastal tourism [47,48]. They are among the most carbon-rich 
forests in the tropics [49], and they have also been modelled. Two 
csm contained mangrove forest before the mining operations 
began, however, this habitat was lost when the mining activity 
commenced. 

2. Nickel – Habitat composition

Figure 12: profile diagrams from Pitopang, (2012) [46], 
p.183 to show change in forest structure

Evergreen Broadleaf Forest (EBF)

Remnant Forest (IFL)

Southeast Sulawesi 
Vegetation Cover

Figure 11:  map adapted from 
Arjasakusuma et al, 
2018 [44], p 3 – to show extent of main 
forest type in the case study area

Savana (SAV)

Cropland (CRO)

Undisturbed rainforest

Moderately disturbed rainforest



© Benchmark Mineral Intelligence 2023 25

3. Nickel – Biomass data
Despite being a conservation hotspot [50]. plant collection rates in 
Sulawesi have been some of the lowest in Indonesia [51]. The 
distribution of known taxa, and the extent of diversity of taxa is 
poorly understood [52,53]. Primary dryland and secondary forest in
studies in Sulawesi, are often classified as a single forest cover
differentiated by elevation range[43]. Figure 13 shows the variation
in elevation change corresponding to soil type [45].The csm are
mostly within lowland areas. Most biomass studies in Sulawesi
have been conducted in a UNESCO Biosphere Reserve; Lore
Lindu National Park, which at its highest point is within upper
montane (~>1800 m), however it does range down to
submontane (~<1000 m)[54-56].

Although Lore Lindu is at a higher altitude than most of csm, it is
it still the most appropriate data to use. Especially the data
points used are from submontane level. There is a higher family
diversity at submontane level compared to higher altitudes.
Forest cover is rich in trees from the Fagaceae, Myrtaceae, 
Icacinaceae, and Escalloniaceae, families[52]. Culmsee et al.
2010[52] found that the presence of Fagaceae provided a higher
Above Ground Biomass (AGB) to tree stands. Carbon estimates 
from soil have been calculated as a mean from nine soil types[57] 
(see Appendix).

Biomass data for Rhizophora stylosa mangrove forest[49] was 
used to estimate loss of carbon stock pre-mine. 

Figure 13: the map of Sulawesi Cannon, (2007) [45] , p.752 to shows the 
major forest types categorised by topography, soil and type. 
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Rainforest Mangrove

Unit Source Location Result Source Location Result

(ρ) Average 
bone dry -
wood 
Density

Global 
Wood 
Density 
Database

- 0.549 Global Wood 
Density 
Database

- 0.549

(dbh) 
Average 
Diameter 
Breast 
Height

Dietz et al. 
(2006) 

Lore Lindu 
National 
Park, 
Sulawesi

31.7 Analuddin
et.al (2020) 

Rawa
Aopa
Watumo
ha
National 
Park, 
Sulawesi

10.3

Average 
tC/ha in Soil

Shofiyati et 
al. (2010)

Indonesian 
wide 
database

109.6 
tC/ha

Shofiyati et al. 
(2010)

Indonesia
n wide 
database

109.6 
tC/ha

Tree density 
(average) 
(per key 
species)

Hertel et. al 
(2006)

Lore Lindu 
National 
Park, 
Sulawesi

(see 
Appen-

dix)

Analuddin
et.al (2020) 

Rawa
Aopa
Watumo
ha
National 
Park, 
Sulawesi

(see 
Appendix
)

Average (n) 
of trees (per 
ha)

Dietz et al 
(2009)

Lore Lindu 
National 
Park, 
Sulawesi

2511 Analuddin
et.al (2020) 

Rawa
Aopa
Watumo
ha
National 
Park, 
Sulawesi

3,500

4. Nickel - Equations
Biomass has been calculated based on the two 
predominant habitat types rainforest and mangroves. 
The same equations have been used and Table 3  
details data sources. 

To calculate carbon stock, it is necessary to use and 
develop equations to calculate the different 
components that make up Total Living Biomass (TLB) 
which include Above Ground Biomass (AGB) and 
Below Ground Biomass (BGB) and soil.  Allometric 
equations are commonly used to estimate 
aboveground biomass (AGB) in forests. Chave et al. 
(2015)[29].

AGB = 𝜌 𝑥 𝑒𝑠𝑝 {−0.667 + 1.784 𝑥 𝑙𝑛 𝑑𝑏ℎ +
0.207 𝑥 𝑙𝑛 𝑑𝑏ℎ 2 − 0.0281 𝑥 𝑙𝑛 𝑑𝑏ℎ 3}

The BGB is calculated from the equation from Cairns et 
al. 199 [32] to estimate root biomass calculated from the 
AGB.  

BGB = 𝑒𝑥𝑝 {−1.057 + 0. 8836 𝑥 1𝑛 𝐴𝐺𝐵 }

Soil was taken as ratio of nine different soil types (see 
Appendix). 

Table 3: Key data points and sources for nickel study area 
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𝐶arbon st𝑜𝑐𝑘

𝑡𝐶
ℎ𝑎
𝑦𝑟

= 𝑇𝐿𝐵

𝑡
ℎ𝑎
𝑦𝑟

× 𝑐 + 𝑆𝐶𝑆

𝑡𝐶
ℎ𝑎
𝑦𝑟

tC/ha/yr = carbon stock tonnes per hectare (tC / ha / yr)

TLB = total living biomass tonnes per hectare (t / ha / yr) 

c = proportion of carbon in bone-dry wood (unitless or kg / kg) x (i.e. IPPC data 
0.5)

SCS = Soil carbon stock tonnes of carbon per hectare (tC / ha / yr) 

a = annual forest growth (m^3 / ha / yr) 

b = bone-dry wood density (kg / m^3) 

c = proportion of carbon in bone-dry wood (IPPC data: 0.57)

d = ratio of molecular mass of CO2 to C

Carbon Flow (per year)

𝐶𝑂2 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑟𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑎𝑛𝑛𝑢𝑚

𝑘𝑔𝐶𝑂2
ℎ𝑎
𝑦𝑟

 = 𝑎

𝑚3

ℎ𝑎
𝑦𝑟

× 𝑏
𝑘𝑔

𝑚3
× 𝑐

𝑘𝑔

𝑘𝑔
× 𝑑

Carbon stock

5. Nickel – Carbon Models
Carbon stock is the calculation of the Total Living Biomass per hectare 
of measured case study mine (csm) area. This is multiplied by the 
proportion of carbon in bone-dry wood density (per hectare per year). 

Table 4 shows tree coverage ratio per habitat type (i.e. rainforest or 
mangrove forest). As expected, the  average (n) of trees per hectare is 
variable dependent and there is a big variation per habitat type. 
Plantations have been accounted as having nominal natural tree cover. 
It should be noted that the carbon stock of plantation trees is not 
included in biomass calculations. 

Carbon flow is the estimation of  the intake of carbon through 
respiration annually, using the annual forest growth rate (for both 
rainforest, and mangrove).

Description Tree Coverage ratio
Number of 
Trees (Fct)

Crops 0.01 25.11
Degragaded RF 0.5 1255.5
Rainforest 1 2511
Mangrove Forest 1 3500
Degraded Mangrove 0.5 1750
Herbaceous 0.01 25.11
Plantation 0.01 25.11

Table 4:  Relevant habitat types and observed prevalence
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This change to the carbon sink in the Sulawesi from the production of nickel is estimated by calculating 
the following four factors:

1. The estimated nickel produced per annum per mine:

2. The average area of vegetation change per case study mine over 14 years assessed via GIS:

3. Land use intensity per operation process:

4. The carbon impact on land-use change (i.e. deforestation) – formulas on pages 26 & 27

29

1. The production of Nickel in Indonesia changes the carbon sink 
negatively

Limonite – 47,250 tonnes (ore grade – 1.35 % & 70 % global recovery)
Saprolite - 63,750 tonnes (ore grade – 1.50 % & 85 % global recovery)

Limonite –  0.056 m2 / kg of Nickel
Saprolite – 0.041 m2 / kg of Nickel

1. LCA ore grades and 
Benchmark expert 
opinion on global 
recovery.

2. GIS data collection.
3. Calculated.
4. Calculated.

Total area change : 36,910,496 m2

Yearly: 2,636,464 m2

Carbon Stock – 168.25 kgCO2eq / m2
Carbon Flow  – 117 grams CO2 / m2

Units Limonite - HPAL Saprolite - RKEF

Carbon stock loss [kgCO2eq/kgNi] 9.4 7.0

Carbon sequestration loss [grams CO2/kgNi] 6.5 4.8
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Mining impact on Carbon Stocks and Flows in Sulawesi

On average, 2,636,464 m2 of vegetation land is transformed in mining 
area per year (mine plus infrastructure). 

Based on estimated forest loss, an average Indonesian nickel mine 
causes the loss of 443,498 tonnes of CO2eq stock per year. 

Based on estimated forest loss, an average Indonesian nickel mine 
causes the loss of  309 tonnes of CO2eq sequestration activity per year.

For every kilogram of nickel produced, there is an average,
carbon stock loss of 168.3 CO2eq per m2 or 45.85 kgC/m2

For every kilogram of nickel produced, there is an average, carbon 
sequestration loss of 117 gCO2  / m2 

443,598 carbon stock loss, average per 
mine (tCO2eq/pa)

309 Carbon sequestration 
loss per mine (tCO2eq/pa)

2,636,464 average annual land change 
per mine (m2)

168.3 loss of carbon stock of mine 
area developed 
(kgCO2eq/m2)

117 loss of carbon sequestration 
of mine area developed 
(gCO2/m2 )
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Nickel impact on Carbon:  Limonite - HPAL scenario

On average, in a HPAL operation, for every 106 tonnes of ore extracted, 
1 tonne of nickel is produced. *Excludes stripping ratio (overburden) 
Ore grade 1.35%

An average HPAL production yields 47,250 tonnes of nickel per year, 
assuming 70% global recovery rate.

For every square meter of mine area (i.e. mine plus infrastructure), on 
average an additional 17.92 kg of nickel are produced (0.056 m2 / kg of 
nickel).

For every kilogram of nickel produced, there is an average carbon 
stock loss of 9.4 kgCO2eq/kg Ni or 2.6 kgC/kg Ni

For every kilogram of nickel produced, there is an average carbon 
sequestration loss of 6.5 gramsCO2/kg Ni

1:106           ratio of nickel to ore 
 extracted*

47,250 average annual nickel 
production (tonnes)

17.92 kg of nickel per m2 per mine 
(land intensity)

1 : 9.4 Nickel/ CO2eq Stock ratio

1 : 0.006 nickel/ CO2 Sequestration 
ratio
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Nickel impact on Carbon:  Saprolite - RKEF scenario

On average, in a RKEF operation, for every 78 tonnes of ore extracted, 1 
tonne of nickel is produced. *Excludes stripping ratio (overburden) Ore 
grade 1.5%

An average RKEF production yields 63,750 tonnes of nickel per year, 
assuming 85% global recovery rate.

For every square meter of mine area (i.e. mine plus infrastructure), on 
average an additional 24.18 kg of nickel are produced (0.041 m2 / kg of 
nickel).

For every kilogram of nickel produced, there is an average carbon 
stock loss of 7 kgCO2eq/kg Ni or 1.9 kgC/kg Ni

For every kilogram of nickel produced, there is an average carbon 
sequestration loss of 4.8 gramsCO2/kg Ni

1:78           ratio of nickel to ore 
 extracted*

63,750 average annual nickel 
production (tonnes)

24.18 kg of nickel per m2 per mine 
(land intensity)

1 : 7 Nickel/ CO2eq Stock ratio

1 : 0.005 nickel/ CO2 Sequestration 
ratio
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Nickel mine growth in Sulawesi has led to a 
reduction of carbon stock (shown in mega 
tonnes carbon (MtC) in rainforest and 
mangroves. The size of the mines and 
corresponding carbon stock changes are 
shown at three intervals over the 14 years 
assessed (2008-2022). 

Carbon stocks reduce from 36.9 MtC (136 
MtCO2eq) in 2008 to 28.4MtC (104 MtCO2eq) 
by 2022.

Note, the methodology means that habitat 
and site changes across 2008-2014 exclude 
changes that pre-date this study period. To 
account for this, an estimation of habitat 
“pre-mine” has been made, to allow for a 
comparator of change in carbon stock 
from this pre-mine state to the years 2008, 
2014 & 2022. A date allocation of this “pre-
mine” state is not given and will in any case 
vary by mine site.  Mangroves is included in 
the pre-mine calculation. However, in the 
case study mines this habitat was removed 
by 2008 so is not therefore, included after 
that point in the carbon stock calculations. 

Carbon stocks pre-mine in this study area 
are estimated at 57.3 MtC (210 MtCO2eq). 

1000

6000

11000

16000

21000

26000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Pre mine 2008 2014 2022

h
a

M
tC

Mine Size (ha) Carbon Stock [MtC]

2. As nickel mines increase in size, in Sulawesi, there is a 
reduction of carbon stock

-8.5 MtC (-31 MtCO2eq) Carbon stocks reduces from 36.9 MtC in 2008 to   
 28.4 MtC by 2022

-28.8MtC (-105 MtCO2eq) Carbon stocks reduces from 57.3 MtC pre-mine to 
 28.4 MtC by 2022

Figure 14: Sulawesi nickel mine growth compared to carbon stock loss
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3. As nickel mines increase in size, in Sulawesi, carbon flow 
capacity decreases and emissions increase

As expected, as the nickel mines in 
Sulawesi grow and the forest is 
deforested or degraded the carbon flow 
(tC) decreases and the carbon emissions 
increase significantly.

It has been assumed that pre-mine the 
mapped areas were forest, allowing an 
estimation of pre-mine carbon stocks 
and carbon flow. Note pre-mine is not 
defined by time and in any case, this will 
vary by mine site. 

As carbon flow (i.e., capture of carbon) 
reduces over time, so carbon emissions 
from the mine site increase from 0 to 
28.8 MtC (106 MtCO2eq).

Figure 15: Carbon emissions compared to carbon flow as nickel mines grow in Sulawesi, Indonesia 
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4. Nickel emissions - compared to 
REDD+ in Indonesia

Figure 16 shows the carbon changes due 
to nickel extraction in the case study areas 
(csm) compared to REDD+ result for 
Indonesia. 

Carbon Stock change a year (5-Mines)
The converted carbon stock loss result to 
show per year, compared to REDD+ 
figures in Indonesia.
.
(%) of Indonesian emissions (Case study 
mine)
Compares the carbon stock loss (%) per 
year to the REDD+ results [58]. Results are 
then converted into CO2eq.

tCO2eq/ha/yr/ x REDD+

(%) of Indonesian emission (Whole of)
This is multiplied by the difference in total 
area. This shows how much more intense 
emissions would be if the all the areas that 
REDD+ looked at were also mined areas.

However, the study area is tropical forest in 
Sulawesi, and disturbed forests only.  So, if 
the same intensity of mines per land were 
developed for the forests that REDD+  
includes, then the emissions would be 
much greater.  This is because there would 
be a greater percentage  of Total Living 
Biomass (TLB) per hectare.

CO2eq Emissions/year 
(REDD+, Indonesia

CO2eq change/ year 
(5-Mines)

(%) of Indonesian 
emissions (Case 

study mines)
(%) of Indonesian 

emissions (Whole of)

Year Mt/year Mt/year

2014 48.98 -3.181 6.5% 10691.6%

2015 48.98 -3.181 6.5% 10691.6%

2016 48.98 -3.181 6.5% 10691.6%

2017 48.98 -3.181 6.5% 10691.6%

2018 48.98 -3.181 6.5% 10691.6%

2019 48.98 -3.181 6.5% 10691.6%

2020 48.98 -3.181 6.5% 10691.6%

2021 48.98 -3.181 6.5% 10691.6%

2022 48.98 -3.181 6.5% 10691.6%

Figure 16: Carbon changes in the case study areas (csm) compared to REDD+ result for Indonesia



www.benchmarkminerals.com | info@benchmarkminerals.com
HQ: London, UK 

Offices: Beijing, Edinburgh, Fort Lauderdale, Melbourne, New Delhi, Porto, San Francisco, Tokyo

References



© Benchmark Mineral Intelligence 2023 37

1. Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. science, 320(5882), 1444-1449.
2. Giljum, S., Maus, V., Kuschnig, N., Luckeneder, S., Tost, M., Sonter, L. J., & Bebbington, A. J. (2022). A pantropical assessment of deforestation caused by industrial 

mining. Proceedings of the National Academy of Sciences, 119(38), e2118273119.
3. Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 15(8), 332-337
4. Li, Q., Qiu, C., Ma, L., Schmitt, M., & Zhu, X. X. (2020). Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with Google Earth 

Engine. Remote Sensing, 12(4), 602
5. Benchmark Minerals Intelligence – cobalt intelligence
6. World bank data country data on Democratic Republic of Congo
7. Al Barazi, S., Schutte, P., & Naeher, U. (2017). Cobalt frim the DRC - potential risks and significance for the global cobalt market (Issue July).
8. Gumbo, D., Clendenning, J., Martius, C., Moombe, K., Grundy, I., Nasi, R., Mumba, K. Y., Ribeiro, N., Kabwe, G., & Petrokofsky, G. (2018). H have carbon stocks in central and

southern Africa’s miombo woodlands changed over the last 50 years? A systematic map of the evidence. Environmental Evidence, 7(1), 1–19.
https://doi.org/10.1186/s13750-018-0128-0

9. Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo, L., & Asner, G. P. (2018). An above-ground biomass map of African savannahs and woodlands at 25 m
resolution derived from ALOS PALSAR. Remote Sensing of Environment, 206(December 2017), 156–173. https://doi.org/10.1016/j.rse.2017.12.030

10. Sikuzani, Y. U., Muteya, H. K., & Bogaert, J. (2020). Miombo woodland, an ecosystem at risk of disappearance in the Lufira Biosphere Reserve (Upper Katanga, DR
Congo)? A 39-years analysis based on Landsat images. Global Ecology and Conservation, 24. https://doi.org/10.1016/j.gecco.2020.e01333

11. Malaisse, F., Schaijes, M., & D’Outreligne, C. (2016). Copper-Cobalt Flora of Upper Katanga and Copperbelt: Field Guide. In Les Pressess Agronomiques de Gembloux
(Vol. 150, Issue 2). https://doi.org/10.5091/plecevo.2017.1273

12. Mercader, J., Bennett, T., Esselmont, C., Simpson, S., & Walde, D. (2009). Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany,
104(1), 91–113. https://doi.org/10.1093/aob/mcp097

13. Pelletier, J., Paquette, A., Mbindo, K., Zimba, N., Siampale, A., Chendauka, B., Siangulube, F., & Roberts, J. W. (2018). Carbon sink despite large deforestation in African
tropical dry forests (miombo woodlands). Environmental Research Letters, 13(9). https://doi.org/10.1088/1748-9326/aadc9a

14. Molinario, G., Hansen, M. C., Potapov, P. V., Tyukavina, A., Stehman, S., Barker, B., & Humber, M. (2017). Quantification of land cover and land use within the rural complex 
of the Democratic Republic of Congo. Environmental Research Letters, 12(10). https://doi.org/10.1088/1748-9326/aa8680

15. Di Gregorio, A., and Jansen, L. J. M. (2000). Land Cover Classification System (LCCS): Classification Concepts and User Manual. Fao, 53(January), 179.
16. Verhegghen, A., Mayaux, P., De Wasseige, C., & Defourny, P. (2012). Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon

stocks and forest areas estimation. Biogeosciences, 9(12), 5061–5079. https://doi.org/10.5194/bg-9-5061-2012

Report references 1

https://doi.org/10.1186/s13750-018-0128-0
https://doi.org/10.1016/j.rse.2017.12.030
https://doi.org/10.1016/j.gecco.2020.e01333
https://doi.org/10.5091/plecevo.2017.1273
https://doi.org/10.1093/aob/mcp097
https://doi.org/10.1088/1748-9326/aadc9a


© Benchmark Mineral Intelligence 2023 38

17. Maquia, I., Catarino, S., Pena, A. R., Brito, D. R. A., Ribeiro, N. S., Romeiras, M. M., & Ribeiro-Barros, A. I. (2019). Diversification of African tree legumes in Miombo–Mopane
woodlands. Plants, 8(6). https://doi.org/10.3390/plants8060182

18. Augustino, S., & Hall, J. B. (2008). Population status of Pterocarpus tinctorius: A medicinal plant species in Urumwa forest reserve, Tanzania. Tanzania Journal of
Forestry and Nature Conservation, 78(1).

19. Ribeiro, N. S., Matos, C. N., Moura, I. R., Washington-Allen, R. A., & Ribeiro, A. I. (2013). Monitoring vegetation dynamics and carbon stock density in miombo woodlands.
Carbon Balance and Management, 8(1), 1–9. https://doi.org/10.1186/1750-0680-8-11

20. Kuyah, S., Sileshi, G. W., Njoloma, J., Mng’omba, S., & Neufeldt, H. (2014). Estimating aboveground tree biomass in three different miombo woodlands and associated
land use systems in Malawi. Biomass and Bioenergy, 66, 214–222. https://doi.org/10.1016/j.biombioe.2014.02.005

21. Missanjo, E., & Kamanga-Thole, G. (2015). Estimation of Biomass and Carbon stock for Miombo Woodland in Dzalanyama Forest Reserve, Malawi. Research Journal of
Agriculture and Forestry Sciences, 3(3), 7–12.

22. Chamshama, S. A. O., Mugasha, A. G., & Zahabu, E. (2004). Stand biomass and volume estimation for miombo woodlands at kitulangalo, morogoro, tanzania. Southern
African Forestry Journal, 200(1), 59–70. https://doi.org/10.1080/20702620.2004.10431761

23. Chidumayo, E. N. (2002). Changes in miombo woodland structure under different land tenure and use systems in central Zambia. Journal of Biogeography, 29(12), 
1619–1626. https://doi.org/10.1046/j.1365-2699.2002.00794.x

24. Kapinga, K., Syampungani, S., Kasubika, R., Yambayamba, A. M., & Shamaoma, H. (2018). Species-specific allometric models for estimation of the above-ground carbon
stock in miombo woodlands of Copperbelt Province of Zambia. Forest Ecology and Management, 417(February), 184–196. https://doi.org/10.1016/j.foreco.2018.02.044

25. Godlee, J. L., Gonçalves, F. M., Tchamba, J. J., Chisingui, A. V., Muledi, J. I., Shutcha, M. N., Ryan, C. M., Brade, T. K., & Dexter, K. G. (2020). Diversity and structure of an arid
woodland in Southwest Angola, with comparison to the wider miombo ecoregion. Diversity, 12(4). https://doi.org/10.3390/D12040140

26. Sikuzani, Y. U., Muteya, H. K., & Bogaert, J. (2020). Miombo woodland, an ecosystem at risk of disappearance in the Lufira Biosphere Reserve (Upper Katanga, DR
Congo)? A 39-years analysis based on Landsat images. Global Ecology and Conservation, 24. https://doi.org/10.1016/j.gecco.2020.e01333

27. Batjes, N. H. (2008). Mapping soil carbon stocks of Central Africa using SOTER. Geoderma, 146(1–2), 58–65. https://doi.org/10.1016/j.geoderma.2008.05.006
28. Ilunga Muledi, J., Bauman, D., Drouet, T., Vleminckx, J., Jacobs, A., Lejoly, J., Meerts, P., & Shutcha, M. N. (2016). Fine-scale habitats influence tree species assemblage in a 

miombo forest. Journal of Plant Ecology, 10(6), rtw104. https://doi.org/10.1093/jpe/rtw104

Report references 2

https://doi.org/10.3390/plants8060182
https://doi.org/10.1186/1750-0680-8-11
https://doi.org/10.1016/j.biombioe.2014.02.005
https://doi.org/10.1080/20702620.2004.10431761
https://doi.org/10.1046/j.1365-2699.2002.00794.x
https://doi.org/10.3390/D12040140
https://doi.org/10.1016/j.geoderma.2008.05.006
https://doi.org/10.1093/jpe/rtw104


© Benchmark Mineral Intelligence 2023 39

Report references 3

29. Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ... & Vieilledent, G. (2015). Improved allometric models to estimate the aboveground
biomass of tropical trees. Global change biology, 20(10), 3177-3190

30. Mpoyi, A., Nyamwoga, F., Kabamba, F., & Assembe-Mvondo, S. (2013). The context of REDD+ in the Democratic Republic of Congo: Drivers, agents and institutions. In The
context of REDD+ in the Democratic Republic of Congo: Drivers, agents and institutions (Issue October). https://doi.org/10.17528/cifor/004267

31. Kengoum, F., Pham, T. T., Moeliono, M., Dwisatrio, B., & Sonwa, D. J. (2020). The context of REDD+ in the Democratic Republic of Congo: Drivers, agents and institutions 
(Vol. 207). CIFOR.

32. Cairns M.A., Brown S., Helmer E.H. and Baumgardner G.A., Root biomass allocation in the world’s upland forests, Oecologia, 111, 1–11 (1997)
33. UNFCCC (2018) Report of the technical assessment of the proposed forest reference emission level of the Democratic Republic of the Congo 

https://unfccc.int/sites/default/files/resource/tar2018_COD.pdf
34. Chen, N., Tsendbazar, N. E., Hamunyela, E., Verbesselt, J., & Herold, M. (2021). Sub-annual tropical forest disturbance monitoring using harmonized Landsat and Sentinel-2

data. International Journal of Applied Earth Observation and Geoinformation, 102, 102386.
35. Benchmark Minerals Intelligence nickel intelligence
36. Dwiyahreni, A. A., Fuad, H. A., Soesilo, T. E. B., Margules, C., & Supriatna, J. (2021). Forest cover changes in Indonesia's terrestrial national parks between 2012 and

2017. Biodiversitas, 22, 1235-1242.
37. Stelbrink, B., Albrecht, C., Hall, R., & von Rintelen, T. (2012). The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace's “anomalous

island”?. Evolution: International Journal of Organic Evolution, 66(7), 2252-2271.
38. BP-REDD+. (2015). National Forest Reference Emission Level for Deforestation and Forest Degradation in the Context of the Activities Referred to in Decision 1 / CP . 16 , 

Paragraph 70 ( REDD + ) Under the UNFCCC : A Reference for Decision Makers. 70, 74. www.reddplus.go.id
39. Van der Ent, A. J. M. M. J., Baker, A. J. M., Van Balgooy, M. M. J., & Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel

hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72-79.
40. Camba, A. (2021). The unintended consequences of national regulations: Large-scale-small-scale relations in Philippine and Indonesian nickel mining. Resources Policy, 

74, 102213

https://doi.org/10.17528/cifor/004267
https://unfccc.int/sites/default/files/resource/tar2018_COD.pdf


© Benchmark Mineral Intelligence 2023 40

41. Olson, D. M., & Dinerstein, E. (1998). The Global 200: a representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation biology, 
12(3), 502-515.

42. Voigt, M., Supriatna, J., Deere, N. J., Kastanya, A., Mitchell, S. L., Rosa, I. M. D., Santika, T., Siregar, R., Tasirin, J. S., Widyanto, A., Winarni, N. L., Zakaria, Z., Mumbunan, S., 
Davies, Z. G., & Struebig, M. J. (2021). Emerging threats from deforestation and forest fragmentation in the Wallacea centre of endemism. Environmental Research 
Letters, 16(9). https://doi.org/10.1088/1748-9326/ac15cd

43. Pusparini, W., Cahyana, A., Grantham, H. S., Maxwell, S., Soto-Navarro, C., & Macdonald, D. W. (2023). A bolder conservation future for Indonesia by prioritising
biodiversity, carbon and unique ecosystems in Sulawesi. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-022-21536-2

44. Arjasakusuma, S., Yamaguchi, Y., Hirano, Y., & Zhou, X. (2018). ENSO-and rainfall-sensitive vegetation regions in Indonesia as identified from multi-sensor remote
sensing data. ISPRS International Journal of Geo-Information, 7(3). https://doi.org/10.3390/ijgi7030103

45. Cannon, C. H., Summers, M., Harting, J. R., & Kessler, P. J. A. (2007). Developing conservation priorities based on forest type, condition, and threats in a poorly known 
ecoregion: Sulawesi, Indonesia. Biotropica, 39(6), 747–759. https://doi.org/10.1111/j.1744-7429.2007.00323.x

46. Pitopang, R. (2012). Impact of forest disturbance on the structure and composition of vegetation in tropical rainforest of Central Sulawesi , Indonesia. 13(4), 178–189. 
https://doi.org/10.13057/biodiv/d130403

47. Kusmana, C. (2014). Distrubution and current status of mangrove forest in Indonesia. In Mangrove Ecosystems of Asia: Status, Challenges and Management 
Strategies (Issue April 2014, pp. 1–471). https://doi.org/10.1007/978-1-4614-8582-7

48. Malik, A., Rahim, A., Sideng, U., Rasyid, A., & Jumaddin, J. (2019). Biodiversity assessment of mangrove vegetation for the sustainability of ecotourism in West Sulawesi,
Indonesia. AACL Bioflux, 12(4), 1458–1466.

49. Analuddin, K., Kadidae, L. O., Yasir Haya, L. O. M., Septiana, A., Sahidin, I., Syahrir, L., Rahim, S., Fajar, L. O. A., & Nadaoka, K. (2020). Aboveground biomass, productivity
and carbon sequestration in rhizophora stylosa mangrove forest of southeast sulawesi, indonesia. Biodiversitas, 21(4), 1316–1325.
https://doi.org/10.13057/biodiv/d210407

50. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858Ref a
51. Culmsee, H., Pitopang, R., Mangopo, H., & Sabir, S. (2011). Tree diversity and phytogeographical patterns of tropical high mountain rain forests in Central Sulawesi, 

Indonesia. Biodiversity and Conservation, 20(5), 1103–1123. https://doi.org/10.1007/s10531-011-0019-y

Report references 4

https://doi.org/10.1088/1748-9326/ac15cd
https://doi.org/10.3390/ijgi7030103
https://doi.org/10.1111/j.1744-7429.2007.00323.x
https://doi.org/10.13057/biodiv/d130403
https://doi.org/10.1007/978-1-4614-8582-7
https://doi.org/10.13057/biodiv/d210407
https://doi.org/10.1007/s10531-011-0019-y


© Benchmark Mineral Intelligence 2023 41

52. Propastin, P. (2013). Large-scale mapping of aboveground biomass of tropical rainforest in Sulawesi, Indonesia, using Landsat ETM+ and MODIS data. GIScience and
Remote Sensing, 50(6), 633–651. https://doi.org/10.1080/15481603.2013.850305

53. Supriatna, J., Shekelle, M., Fuad, H. A. H., Winarni, N. L., Dwiyahreni, A. A., Farid, M., Mariati, S., Margules, C., Prakoso, B., & Zakaria, Z. (2020). Deforestation on the
Indonesian island of Sulawesi and the loss of primate habitat. Global Ecology and Conservation, 24, e01205. https://doi.org/10.1016/j.gecco.2020.e01205

54. Culmsee, H., Leuschner, C., Moser, G., & Pitopang, R. (2010). Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of 
Fagaceae in tropical montane rain forests. Journal of Biogeography, 37(5), 960–974. https://doi.org/10.1111/j.1365-2699.2009.02269.x

55. Hertel, D., Moser, G., Culmsee, H., Erasmi, S., Horna, V., Schuldt, B., & Leuschner, C. (2009). Below- and above-ground biomass and net primary production in a
paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. Forest Ecology and Management, 258(9), 1904–1912.
https://doi.org/10.1016/j.foreco.2009.07.019

56. Dietz, J., Hölscher, D., Leuschner, C., & Hendrayanto. (2006). Rainfall partitioning in relation to forest structure in differently managed montane forest stands in
Central Sulawesi, Indonesia. Forest Ecology and Management, 237(1–3), 170–178. https://doi.org/10.1016/j.foreco.2006.09.044

57. Shofiyati, R., Las, I., & Agus, F. (2010, September). Indonesian soil database and predicted stock of soil carbon. In Proceedings of international workshop on evaluation 
and sustainable management of soil carbon sequestration in Asian countries Bogor, Indonesia Sept (pp. 28-29).

58. Budiharto, Krisnawati, H., Manuri, S., Purwanto, J., Asaad, I., Nurhayati, & Gunawan, W. (2022). NATIONAL FOREST REFERENCE EMISSION LEVEL FOR 
DEFORESTATION AND FOREST DEGRADATION In the Context of Decision 12/CP.17 para 12 UNFCCC.

Report references 5

https://doi.org/10.1080/15481603.2013.850305
https://doi.org/10.1016/j.gecco.2020.e01205
https://doi.org/10.1016/j.foreco.2009.07.019


Scan to find 
out more 
about
Benchmark 
Mineral 
Intelligence

sustainability@benchmarkminerals.com

info@benchmarkminerals.com

www.benchmarkminerals.com

@benchmarkmin

FOR ANY QUERIES, CONTACT US :

mailto:amiller@benchmarkminerals.com
mailto:info@benchmarkminerals.com
http://www.benchmarkminerals.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

